ABSTRACT

Fourteen novel Zn(II) complexes, $[Zn_2(diclo)_2(H_2O)_2]$ (1), $[Zn_2(Indo)_4]$ (2), $[Zn(diclo)_4(pico)_2]$ (3), $[Zn_2(indo)_4(pico)_2]$ (4), $[Zn(diclo)_2(apy)_2]$ (5), $[Zn(indo)_2(apy)_2]$ (6), $[Zn(diclo)_2(ampy)]$ (7), [Zn(indo)₂(ampy)] (8), $[Zn(diclo)_2(phen)]$ [Zn(diclo)₂(phen)] (9) (9), $[Zn(indo)_2(phen)]$ (10), $[Zn(diclo)_2(dmph)]$ (11), $[Zn(indo)_2(dmph)]$ (12), $[Zn(diclo)_2(admp)_2]$ (13), $[Zn(indo)_2(admp)_2]$ (14), were synthesized and characterized by means of IR, ¹H-NMR, ${}^{13}C{H}$ -NMR and UV-Vis spectrometry. The crystal structures of complexes (1), (4), (5), (11) were determined by single crystal X-ray diffraction. Melting point and solubility of the synthesized complexes were determined.

The *in-vitro* anti-bacterial activity of the synthesized complexes was screened using agar diffusion assay against two strains of Gram-negative bacteria (*Escherichia coli, Pseudomonas aeruginosa*), and two strains of Gram-positive bacteria (*Staphylococcus aureus, Listeria monocytogenes*), the results showed higher activity against *Pseudomonas aeruginosa* and *Staphylococcus aureus*, in comparison with diclofenac, indomethacin and free nitogen ligands.